
Journal of Computational Physics 368 (2018) 277–298
Contents lists available at ScienceDirect

Journal of Computational Physics

www.elsevier.com/locate/jcp

Numerical artifacts in the discontinuous Generalized Porous 

Medium Equation: How to avoid spurious temporal 
oscillations

Danielle C. Maddix a,∗, Luiz Sampaio b, Margot Gerritsen a,b

a Institute of Computational and Mathematical Engineering, Stanford University, United States
b Energy Resources Engineering, Stanford University, United States

a r t i c l e i n f o a b s t r a c t

Article history:
Received 19 January 2018
Received in revised form 17 March 2018
Accepted 16 April 2018
Available online 1 May 2018

Keywords:
Discontinuous Generalized Porous Medium 
Equation
Stefan problem
Nonlinear degenerate parabolic equations
Temporal oscillations
Numerical shock detection
Jump condition

Numerical discretizations of the Generalized Porous Medium Equation (GPME) with 
discontinuous coefficients are analyzed with respect to the formation of numerical 
artifacts. In addition to the degeneracy and self-sharpening of the GPME with continuous 
coefficients, detailed in [1], increased numerical challenges occur in the discontinuous 
coefficients case. These numerical challenges manifest themselves in spurious temporal 
oscillations in second order finite volume discretizations with both arithmetic and 
harmonic averaging. The integral average, developed in [2], leads to improved solutions 
with monotone and reduced amplitude temporal oscillations. In this paper, we propose 
a new method called the Shock-Based Averaging Method (SAM) that incorporates the 
shock position into the numerical scheme. The shock position is numerically calculated 
by discretizing the theoretical speed of the front from the GPME theory. The speed 
satisfies the jump condition for integral conservation laws. SAM results in a non-oscillatory 
temporal profile, producing physically valid numerical results. We use SAM to demonstrate 
that the choice of averaging alone is not the cause of the oscillations, and that the shock 
position must be a part of the numerical scheme to avoid the artifacts.

© 2018 Elsevier Inc. All rights reserved.

1. Introduction

The purpose of the paper is to identify the cause of the numerical artifacts reported in the literature [1–3] for second 
order finite volume discretizations of the Generalized Porous Medium Equation (GPME) with discontinuous coefficients, and 
to suggest a numerical approach that does not have these problems. The GPME, commonly known as the Filtration Equation, 
can be expressed in both conservative and integral forms as:
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pt = ∇ · (k(p)∇p)

= ��(p), where

�(p) =
p∫

0

k(p̃)dp̃, k(p) = �′(p).

(1.1)

In the discontinuous coefficients case, k(p) is given as:

k(p) =
{

kmax, p ≥ p∗

kmin, p∗ > p, where
(1.2)

kmax, kmin and p∗ are real positive constants.
In this paper, we are interested in a subclass of the GPME known as the Stefan problem [4–7], for which

�(p) =
{

c1(p − c3)+, if p ≥ 0,

c2 p, otherwise,
(1.3)

for arbitrary c1, c2, c3 ∈ R. We look at a particular Stefan problem, where p ≥ 0, c1 = kmax and c3 = p∗ . Then, �(p) in Eqn. 
(1.1) can be expressed as the positive part function

�(p) = kmax(p − p∗)+ =
{

kmax(p − p∗), if p ≥ p∗,
0, otherwise,

(1.4)

and k(p) is given by Eqn. (1.2) with kmin = 0.
The Stefan problem can also be formulated in its classical form [8,9] as

∂ p

∂t
= kmax�p, p ≥ p∗,

∂ p

∂t
= kmin�p, p < p∗.

In the classical Stefan problem, the above two parabolic equations are defined on domains that are separated by a moving 
interface x∗(t). The Stefan condition is given on the interface as

(pL − pR)
dx∗(t)

dt
= −kmax

∂ pL

dx
+ kmin

∂ pR

dx
,

where pL ≡ limx→x∗(t)− p(x, t) and pR ≡ limx→x∗(t)+ p(x, t). The Stefan condition can be derived by using the Rankine–
Hugoniot jump condition for this conservation law [10].

The Stefan Problem has been key to both the numerical and theoretical developments of the GPME. The Stefan Problem 
is used in modeling phase transitions, and was developed to study the evolution of a medium of two phases, water and 
ice [7]. Brattkus and Meiron [11] use the Stefan problem to model crystal growth. Sethian and Strain [12] and Chen et al. 
[9] develop a modified Stefan problem to model crystal growth as well as dendritic solidification. Eqn. (1.2) is often used to 
illustrate the numerical challenges present in more complex porous media applications. For example, in van der Meer et al. 
[2] a foam model prototype is developed with kmax = 1, kmin = ε → 0 and p∗ = 0.5.

The continuous GPME already poses numerical challenges, caused by self-sharpening and degeneracy for near-zero k(p)

[1]. Due to this self-sharpening and degeneracy in the continuous case, it is not just the discontinuity that poses the nu-
merical challenges in the Stefan problem in Eqn. (1.4). The discontinuity in k(p) does make the challenges more severe and 
because of this discontinuity, the Modified Equation Analysis approach in [1] for the continuous GPME is not applicable. 
Here, we look at the discontinuous GPME, and also refer to subclasses of the continuous GPME. The Porous Medium Equa-
tion (PME) subclass, where k(p) = pm and m ≥ 1, is used to model gas flow through a porous medium [1,7,13]. Another 
application in thermodynamics is the superslow diffusion equation [1,7], where k(p) = exp(−1/p). Further applications of 
the GPME for continuous k(p) are detailed in [1].

1.1. Understanding the behavior of the GPME

The GPME in Eqn. (1.1) at first appears like a heat equation. Contrary to solutions of the heat equation, where the 
propagation speed is infinite, solutions of the GPME are known to have a finite speed of propagation [7]. This results from 
the degeneracy of the GPME for compactly supported initial data, and is a property that distinguishes the GPME from 
classical parabolic theory. This degeneracy leads to self-sharpening and moving interface solutions, as illustrated in Fig. 1. 
In addition, for certain compactly supported smooth initial data, the waiting time phenomenon can occur. This is discussed 
in the literature [14,15] [16, Chapter 3] and is illustrated in Fig. 3. The term waiting time refers to the fact that an interface 
moves only after sufficient sharpening.
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Fig. 1. The exact solution of Eqn. (1.1) with k(p) given by Eqn. (1.2), where kmax = 1 and kmin = 0, evolves as a rightward moving shock over time. The 
moving shock position is given by x∗(t) and the fixed p value at the shock is given by p∗ = 0.5.

The theoretical propagation speed for compactly supported initial data is known and is given by Darcy’s Law [7] as

V = − lim
x→x∗(t)−

∇v,

where

v =
p∫

0

�′(p̃)

p̃
dp̃, (1.5)

and x∗(t) is the shock position. Combining these expressions gives

V = − lim
x→x∗(t)−

�′(p)∇p

p
= − lim

x→x∗(t)−
k(p)∇p

p
. (1.6)

Eqn. (1.6) holds for any k(p). In the particular case of the Stefan problem in Eqn. (1.4), k(p) = kmax = 1.0 to the left of 
the shock. Substituting the k(p) limit into Eqn. (1.6) gives

V = − lim
x→x∗(t)−

∇p

p
= − lim

x→x∗(t)−
∇ log(p). (1.7)

The expression for the velocity V can also be expressed in terms of fluxes. The flux F for the integral conservation law 
in Eqn. (1.1) is given by

F (p) = −k(p)∇p = −∇�(p). (1.8)

Then, from Eqn. (1.6),

V = F (pL)

pL
, (1.9)

where pL ≡ limx→x∗(t)− p(x, t). For a compactly supported initial condition and kmin = 0, the flux and p values to the right 
of the shock are zero. In this case, the velocity in Eqn. (1.9) can be expressed in terms of the familiar jump condition for 
integral conservation laws as

V = F (pL) − F (pR)

pL − pR
, (1.10)

where pR ≡ limx→x∗(t)+ p(x, t) [7,17]. The velocity in Eqn. (1.10) holds in general for any kmin, pR ≥ 0, by the Rankine–
Hugoniot condition [18].

1.2. Numerical methods to approach this problem

The degeneracy, self-sharpening and nonlinearity of the GPME pose interesting numerical challenges. The numerical 
approaches used by practitioners vary based on the field. In the porous media communities, central flux-based finite volume 
methods are widely employed to solve the related variable coefficients problem pt = ∇ · (k(x)∇p). The coefficient k(x) is 
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Fig. 2. Comparison of various averages, where kmax = 1, kmin = 0 and p∗ = 0.5. The spatial step size �x = 0.04 and the time step size �t = �x2/32.

defined at the cell-centers, and harmonic and arithmetic averaging are commonly used to compute the coefficient, which 
may be discontinuous, at the cell interface. Harmonic averaging is often preferred in these problems because it leads to more 
physical solutions. This common finite volume averaged-based approach has also been extended to the nonlinear GPME in 
Eqn. (1.1). For our case, the selection of the k(p) averaging is not as straightforward as in the variable coefficient case. After 
carefully comparing arithmetic to harmonic averaging, Lipnikov et al. [3] prefer arithmetic averaging over harmonic for the 
continuous PME with near-zero k(p) = pm . An integral average is developed in van der Meer et al. [2] for the discontinuous 
GPME in Eqn. (1.2). With these average-based approaches, it is difficult to satisfy the jump condition in Eqn. (1.10). Violation 
of this condition manifests itself in locking and spurious temporal oscillations, as illustrated in Figs. 2 and 3 and further 
discussed in Section 5. In other fields, adaptive and moving mesh approaches have been applied to this problem also with 
increased refinement near the shock. In [13], for example, a finite element moving mesh method for the PME is developed. 
Adaptive Mesh Refinement (AMR) will be discussed further in Section 5.

Variational particle schemes have been developed for the PME in [19–21], where a variational principle is defined and 
steepest descent is applied to optimize the corresponding energy function. Variational principles have also been defined for 
the Stefan problem in [22] and a similar gradient flow method can be applied for the discontinuous GPME.

In the crystal application communities, numerical work has been done on solving the Stefan problem, as detailed in 
[23–26] and the references therein. In [27,28], an enthalpy scheme for Stefan problems is introduced. This method con-
sists of a compact finite difference stencil with an implicit temporal scheme. The shock position is not incorporated into 
the scheme, and the error is observed to be concentrated at the moving interface. Brattkus and Meiron [11] show that 
finite difference and finite element methods that do not take special care at the interface result in a significant error of 
O(

√
�x). They propose an effective method based on an integral equation formulation that requires an additional integral 

evaluation.
In two-phase flow applications of the Stefan problem, level set methods [8] could also be useful in tracking the evolving 

interface. Thus far, they have not been directly applied to Eqn. (1.4). Related problems with Stefan boundary conditions 
are discussed in Sethian and Strain [12] and Chen et al. [9]. More recent approaches using the level set method in the 
solidification community are detailed in [29,30]. An advantage of the level set approach over traditional front-tracking 
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Fig. 3. Comparison of various averages, where kmax = 1, kmin = 0 and p∗ = 0.5 for a waiting time phenomenon example. The piecewise linear initial 
condition self-sharpens until it is sharp enough for the support interface position to move rightward at later times past the initial interface position at 
x = 0.5. The spatial step size �x = 0.01 and the time step size �t = �x2/32.

approaches [31,32] is that the interface is treated implicitly. In doing so, the level set method can be more easily extended 
to higher dimensions, and is robust under complex topologies. Numerical methods combining the level set approach with 
the Extended Finite Element Method (X-FEM) have also been developed to solve these Stefan problems [33,34]. A modified 
Stefan problem is also solved in Zhao et al. [35] using a phase-field method. Phase-field methods converge as the interface 
thickness parameter tends to zero. The use of phase-field approaches in solidification and the effect of the interface thickness 
parameter have also been studied in [36,37]. While these papers in the solidification and phase change communities provide 
approaches to solve the Stefan problem, they do not give details on understanding why the numerical artifacts occur with 
finite volume average-based approaches. This leads us to the main goal of this paper.

1.3. Main goal of this paper

The main goal of this paper is to shed light on the origin of the numerical problems reported in the literature for 
finite volume averaged-based approaches of the discontinuous GPME. Before we discuss the cause of the artifacts, we first 
introduce an alternate numerical method for Eqn. (1.4) that does not exhibit the numerical errors observed in the literature. 
This newly developed Shock-Based Averaging Method (SAM) is discussed in Section 2. We discuss this first because it shows 
that incorporation of the shock position in the scheme is key, and also helps with the understanding of the artifacts in 
later sections. Section 3 discusses the derivation of SAM when the shock position is known. The shock position can also 
be approximated using the jump condition, which is detailed in Section 4. In Section 5, we cast SAM in the finite volume 
framework to help identify what has been lacking in the other approaches. The main issue is that these discretizations do 
not contain enough information about the shock.
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2. Proposed numerical method: shock-based averaging method (SAM)

Due to the discontinuities in k(p) and p, we adopt a finite volume approach to the integral form of the governing 
equation:

pt = ∇ · (k(p)∇p), where

k(p) =
{

kmax, p ≥ p∗

kmin, p∗ > p,

(2.1)

where p∗ is the left limiting value. We first define a finite volume grid with cell-centers x j for j = 1, . . . , N + 1. The bound-
aries of the domain are at x1 and xN+1, respectively and the corresponding unknowns p are fixed by Dirichlet boundary 
conditions. The remaining N −1 degrees of freedom p j , and the corresponding coefficients k j , are defined at the nodes x j
for j = 2, . . . , N . We define control volumes C V j with width �x j . The cell faces x j+1/2 of each C V j are at a distance of 
�x j/2 from the cell-centers x j . We assume that the solution is monotone and non-increasing, and that the shock is located 
between xi and xi+1, such that pi ≥ p∗ ≥ pi+1.

The semi-discrete numerical discretization for C V j with volume �x j is given by

�x j
dp j

dt
= F −

j − F +
j , (2.2)

where F −
j represents the in-flux and F +

j represents the out-flux of C V j . The numerical fluxes

F +
j = −k j+1/2

p j+1 − p j

�x
, j 
= i, (2.3)

and

F −
j = −k j−1/2

p j − p j−1

�x
, j 
= i + 1, (2.4)

are defined at all faces away from the shock cell with the standard two-point flux approximation, where �x ≡ �x j . The 
coefficient k j+1/2 at the cell face represents a local average of its neighboring coefficients. Then, for any two-neighbor 
average away from the shock cell, the coefficient is constant and given by

k j+1/2 =
{

kmax, 1 ≤ j ≤ i − 1,

kmin, i + 1 ≤ j ≤ N.
(2.5)

Analogous definitions are used for j −1/2. Because of the discontinuity, Eqns. (2.3)–(2.4) cannot be used for the flux at the 
cell interface xi+1/2.

2.1. Formulation of the fluxes near the shock

To estimate the fluxes out of C V i and into C V i+1, we borrow ideas from hyperbolic systems [38] and place a control 
volume around the discontinuity. Fig. 4 shows the auxiliary finite volume grid with the additional control volume C V∗
around the physical shock position x∗(t), where p(x∗(t), t) ≡ p∗ is defined. Fig. 4 also shows �x∗(t) as the distance between 
xi and x∗(t), where 0 ≤ �x∗(t) ≤ �x. We then remove the cell face at position xi + �x/2 and add the cell faces of C V∗ . The 
new cell faces are chosen to be centrally located at a distance of

|x∗(t) − xi|
2

≡ �x∗

2
,

from xi and x∗(t), and a distance of

|x∗(t) − xi+1|
2

≡ �x − �x∗

2
,

from x∗(t) and xi+1. We have effectively added an additional degree of freedom p∗ at x∗(t). In Eqn. (2.1), p∗ is known, and 
it does not need to be computed. We present the approach in its general form for future extensions.

With the additional control volume, we can now define the necessary out-flux F +
i of C V i and in-flux F −

i+1 of C V i+1. 
The coefficient at each of the new cell faces is known. By the monotonicity of p, for any p(x, t) to the left of the interface, 
k(p(x, t)) = kmax. Similarly, for any p(x, t) to the right of the interface, k(p(x, t)) = kmin. For this piecewise constant coeffi-
cient, any two-neighbor average on this auxiliary grid gives the same coefficient value at the faces. Based on these known 
coefficient values at the faces and the face-centered grid, the second-order fluxes are given by
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Fig. 4. Illustration of the additional control volume C V∗ around the shock position x∗(t). The grid points xi and xi+1 are depicted by the blue dots, and 
x∗(t) is depicted by the red star. The dashed line represents the deleted cell face between C V i and C V i+1. The new cell faces are located at a distance 
�x∗(t)/2 from xi and [�x − �x∗(t)]/2 from xi+1. (For interpretation of the colors in the figure(s), the reader is referred to the web version of this article.)

F +
i = −kmax

p∗ − pi

�x∗ , (2.6)

at the cell face between xi and x∗ and

F −
i+1 = −kmin

pi+1 − p∗

�x − �x∗ , (2.7)

at the cell face between x∗ and xi+1. The resulting scheme is conservative because F +
i is equal to the in-flux F −∗ of C V∗ , 

by definition and similarly F −
i+1 is equal to the out-flux F +∗ of C V∗ . The fluxes are then substituted into the semi-discrete 

equation (2.2), where the cell volumes are now given by �xi = (�x + �x∗)/2 and �xi+1 = �x − �x∗/2, respectively.
For kmin = 0, we can relate the expression for F +

i in Eqn. (2.6) to the expression for �(p) = kmax(p − p∗)+ in Eqn. 
(1.4) for the Stefan problem. The analytical flux F (pL) is given by −∇�(pL) in Eqn. (1.8). The numerical flux F +

i can be 
interpreted as approximating this gradient with an upwind discretization as

−�(p∗) − �(pi)

�x∗ = −kmax
p∗ − pi

�x∗ = F +
i .

We see that the above formula is a first order approximation to the flux at x∗(t). From the jump condition in Eqn. (1.9), the 
velocity can then be computed.

Round-off errors can arise when the shock location approaches the grid points xi and xi+1, and the denominators in 
Eqn. (2.6) and Eqn. (2.7) approach zero. To avoid problems, we specify a tolerance of ε that is proportional to �x. If 
�x∗ ≤ ε , we neglect the leftmost portion near xi , and set ki+1/2 = kmin for C V i . Similarly, if �x − �x∗ ≤ ε , we ignore the 
rightmost portion near xi+1, and set ki+1/2 = kmax for C V i+1. We then use these coefficients in the standard two-point flux 
approximation in Eqns. (2.3) and (2.4).

We will refer to the above approach as the Shock Based-Averaging Method (SAM).

3. SAM numerical results: exact shock location

In the numerical results presented throughout the paper, the test problem is given by Eqn. (2.1) with kmax = 1.0, kmin =
0.0 and p∗ = 0.5. The choice of kmax and p∗ is arbitrary, while kmin is set to zero to test the behavior of the numerical 
method in the degenerate case. The algorithm also works for arbitrarily small kmin. The fixed Dirichlet boundary conditions 
are given by

p(0, t) = 1.0, ∀t ≥ 0,

p(1, t) = 0.0, ∀t ≥ 0.
(3.1)

We first present results for the initial condition displayed in Fig. 5. This initial condition is formed as the exact solution to 
Eqn. (2.1) at a later time. The same parameters for kmax and p∗ , as given above for the test problem, are used to generate 
the initial condition, whereas kmin = 0.01 for some smoothness at the bottom of the front. The coefficient value kmin = 0
throughout the simulations.

For the representative test problem, an analytical solution exists, and is used to verify the implementation through 
detailed convergence studies. The derivation of the exact solution is generalized for arbitrary kmax in Appendix A. In this 
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Fig. 5. Spatial profile at time t = 0.

section, we use the exact shock position to compute �x∗(t) ≡ |x∗(t) − xi |, where

x∗(t) = α
√

t, α = 2
√

kmaxz1,

and z1 is the solution to the nonlinear equation in Eqn. (A.4). In the following section, we will show how the shock location 
can be approximated, if it is not available.

After numerical stability and accuracy tests, the time step is selected to be �t = �x2/32 for the explicit Forward Euler 
method. The discontinuity in the coefficient and the degeneracy make the time step criterion be more restrictive than it is 
for classical parabolic equations. If stability is the only interest, and not accuracy, the coefficient in the time step can be 
increased, but the time step must still be on the same order of O(�x2).

In Fig. 6, the numerical solution is plotted at the arbitrary position x = 0.32 over time. By self-similarity of the solution 
[1,7,13], the temporal plots have the same profile for any x-coordinate that the front has passed through. Fig. 6 illustrates 
that the numerical solution with SAM has an accurate and non-oscillatory temporal profile, even on a coarse grid. Fig. 7
reveals that the shock location is accurate in space for this moving front problem. The self-sharpening nature of the GPME 
[1,7,13] is depicted, by the smooth lower corner in the initial condition in Fig. 5 evolving into a sharp corner in Fig. 7. Fig. 7
also illustrates the sharp capture of the shock.

4. SAM numerical results: approximate shock location

The method in the prior section can be extended to more general GPME problems, where the exact shock position is not 
known. The finite speed of propagation property and theoretical speed of the front for the GPME, discussed in Section 1.1, 
can be utilized to numerically approximate the shock location. Again the fluxes in Eqns. (2.6) and (2.7) are used with 
the difference that �x∗(t) is numerically calculated. In this section, we show that this approximation does not introduce 
numerical artifacts, such as temporal oscillations. The convergence results are provided in Appendix B.

We discretize V in Eqn. (1.7) with upwinding for the derivative as

V̂ = − pi − pi−1

�xpi
, (4.1)

where i is the index, such that pi ≥ p∗ ≥ pi+1. Eqn. (4.1) can be interpreted as an approximation of the jump condition in 
Eqn. (1.9), where pL is approximated by pi and pR = 0. For problems where pR is not initially zero, such as the waiting 
time problem in Section 1.2, we can also use a discrete approximation to Eqn. (1.10). Care must be taken numerically when 
approximating pR in Eqn. (1.10), since pi+1 is not guaranteed to be zero: all that is guaranteed is that 0 ≤ pi+1 ≤ p∗ . In this 
case, we use pi+2 to approximate pR .

To obtain the numerical shock position, a simple time integration is implemented. We let ξn represent the approximate 
x∗(t) at time step n ≥ 0 and substitute

�x∗(t) ≈ ξn − xi, (4.2)

into the expressions for the fluxes in Eqns. (2.6) and (2.7). We integrate the approximate shock speed in Eqn. (4.1) in time, 
using the following update

ξn+1 = ξn + �t V̂ . (4.3)

We assume that the initial position ξ0 is known from the problem definition or can also be approximated.
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Fig. 6. Temporal profiles at position x = 0.32 with �t = �x2/32.

We can also approximate �x∗(t) using a level set method [8]. In the level set method, the interface x∗(t) is represented 
by the zero level set {x | φ(x, t) = 0} of a signed distance function φ(x, t). Using the velocity V of the interface in Eqn. (1.7), 
the evolution equation can be written in terms of φ(x, t) as

φt + V · ∇φ = 0. (4.4)

The velocity can be extended to the entire domain or in a neighborhood of the interface by using velocity extension methods 
based on the Fast Marching Method [39]. The level set equation (4.4) can be solved numerically using Forward Euler in time 
and upwinding for the gradient, where V is discretized as V̂ in Eqn. (4.1). Since �x∗(t) is defined as the distance from 
the shock or interface x∗(t) to the grid point xi , �x∗(t) can be calculated by |φ(xi)|. Solving Eqn. (4.4) for φn

i and setting 
�x∗(t) ≈ |φn

i | gives the same results as solving Eqns. (4.2)–(4.3).
Figs. 8a and 8b illustrate the long-time behavior of the numerical shock position evolution. Fig. 8a displays that the 

numerical shock position aligns with the exact shock position as a function of time, and that the shock position evolution 
is accurately captured without oscillations. Both plots verify the numerical implementation, and show that there is no 
significant accuracy loss in estimating the shock position using Eqn. (4.3).

The results in Figs. 9 and 10 on the same test case from the prior section show that there is no significant change in the 
behavior of the SAM solution with the approximate shock speed than with the exact shock speed in the prior section.

Figs. 11a–11c show results for SAM for the waiting phenomenon problem discussed in Section 1.1. For this initial condi-
tion, the exact solution is not known. The figures show that the SAM solution is accurate and does not possess the numerical 
artifacts shown in Fig. 3.
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Fig. 7. Spatial profiles at time t = 0.05 with �t = �x2/32.

Fig. 8. Comparison of the temporal profiles of the shock position and relative error for �x = 0.04 and �t = �x2/32.

5. Average-based approaches

In the prior sections, we showed that we developed an accurate method, SAM, for the Stefan problem. The main goal of 
the paper is to understand why the artifacts are occurring with finite volume averaged-based methods from the literature. 
We will now recast SAM in this framework to shed light on what is happening in these methods that are used frequently 
in the porous media community.

We implement the finite volume average-based methods using the Forward in Time, Central in Space (FTCS) discretization 
on a uniform Cartesian grid, as is commonly done in the porous media literature. The numerical fluxes are given by

F +
j = −k j+1/2

p j+1 − p j

�x
, (5.1)

and

F −
j = −k j−1/2

p j − p j−1

�x
, (5.2)

for an arbitrary average k j+1/2 of the neighboring coefficients at the cell face x j+1/2 for all j = 1, . . . , N . For verification, we 
successfully repeated the test case presented for the arithmetic and integral average in van der Meer et al. [2].
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Fig. 9. Spatial profiles at time t = 0.05 with �t = �x2/32.

5.1. Arithmetic and harmonic averages

In the FTCS finite volume scheme with arithmetic

kA
j+1/2 = k j + k j+1

2
, (5.3)

and harmonic

kH
j+1/2 = 2k jk j+1

k j + k j+1
, (5.4)

averaging, the fluxes in and out of the control volumes surrounding the shock are discretized using Eqns. (5.1)–(5.2). The 
corresponding arithmetic fluxes are given by

F +
i

A = F −
i+1

A = −kA
i+1/2

pi+1 − pi

�x
. (5.5)

The analogous expression holds for the harmonic fluxes F +
i

H
and F −

i+1
H

, where the arithmetic average kA
i+1/2 in Eqn. (5.5)

is replaced with the harmonic average kH
i+1/2.

The temporal plots at x = 0.32 in Fig. 12 reveal that the numerical interface with harmonic averaging is locked, that is, 
does not move at all, and so does not advance to this position. Fig. 13 shows the spatial evolution and we again see the 
locking with harmonic averaging. This numerical solution in Fig. 13 evolves to a step function with values at 1 and 0. Eqn. 
(5.4) explains this locking numerical artifact, since kH

j+1/2 = 0 when either coefficient is zero. Although here locking is seen 
as a drawback, there are situations, where it can be desirable, such as in variable coefficient problems, pt = ∇ · (k(x)∇p), 
when the interface separates a permeable and impermeable material. The arithmetic average is known to cause leakage 
across such interfaces. We could relax kmin = 0 to kmin = ε for some small ε > 0. Fig. 14a shows that for ε = 0.01, the 
numerical solution with harmonic averaging no longer completely locks, but is still lagging behind the true front location. 
From Eqn. (5.4), we see that kH

i+1/2 favors the smaller coefficient and is approximately equal to 2ε , as the shock moves 
through the interval [xi, xi+1]. The constant and small averaged k value at the cell face results in a solution whose numerical 
speed is too slow. Grid dependent oscillations with much larger amplitudes than those in the solution with arithmetic 
averaging are present in its temporal profile in Figs. 14b–14c. In [2], the harmonic average is not considered, since it is 
known in the literature to behave poorly for the GPME with near-zero coefficients. In the rest of this subsection, we focus 
on the behavior of the solution with arithmetic averaging.

The numerical solutions depicted in Figs. 12 and 13 show results for the arithmetic average. We see that the numerical 
solution with arithmetic averaging does not sharply capture the shock. Fig. 12 shows spurious oscillations of low and high 
frequency. The low frequency oscillations are grid dependent. The high frequency oscillations are apparent in the zoomed 
in region around the solution shock value of p∗ = 0.5. Fig. 13 shows that the solution with arithmetic averaging does not 
have spatial oscillations. In the temporal view, oscillations are present.

There are two main differences in the artifacts for the continuous and discontinuous GPME. Here, for the discontinu-
ous case, there are temporal oscillations of low and high frequencies for the arithmetic average. For the continuous GPME, 
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Fig. 10. Temporal profiles at position x = 0.32 with �t = �x2/32.

temporal oscillations were only observed in solutions with harmonic averaging [1]. The lower frequency grid dependent os-
cillations were analyzed in [1] for discretizations with harmonic averaging. The high frequency oscillations are an additional 
numerical artifact with arithmetic averaging that were not observed for the harmonic average in [1].

The low frequency temporal oscillations have been studied in the literature [1,2,40,41]. It has been shown in these works 
that the temporal oscillations occur as the front crosses a grid cell. The spurious oscillations then do not vanish with grid 
refinement. The frequency increases and the amplitude decreases, as the number of grid points increases. The differences in 
frequency and amplitude are illustrated by the solutions for N = 50 in Fig. 12a and N = 100 in Fig. 12b. Another observed 
characteristic of these oscillations in [2,40,41] is that the amplitude decreases as shock moves further away from the solution 
probe point. This is because the possible error in the shock position relative to the distance from the probe point to the 
shock decreases.

The high frequency oscillations were also observed in [2]. Figs. 15a–15b illustrate the temporal profile on a shorter time 
interval, where the high frequency oscillations occur for p values near p∗ = 0.5. We see that pi+1 is slowly increasing, until 
it crosses the threshold at p∗ = 0.5. The corresponding ki+1 then jumps from kmin = 0 to kmax = 1, according to the model 
for k(p) in Eqn. (1.2). The arithmetic average kA

i+3/2 in Eqn. (5.3) jumps from 0 to 0.5, as illustrated in Figs. 15a–15b. The 
increase in kA

i+3/2 causes p to drop below p∗ = 0.5 and kA
i+3/2 to jump back down to 0 at the next time step. The cycle then 

repeats itself.
We use the FTCS discretization to explain the effect of the jump in kA

i+3/2 on the p value at the next time step. We 
discretize the semi-discrete equation (2.2) with Forward Euler in time and substitute in the arithmetic fluxes to obtain

pn+1
i+1 = pn

i+1 + �t
(

− kA
i+1/2

[ pn
i+1 − pn

i
]
+ kA

i+3/2

[ pn
i+2 − pn

i+1
])

, (5.6)

�x �x �x
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Fig. 11. SAM numerical solution with N = 100 grid points and �t = �x2/32 for the waiting time phenomenon example from Fig. 3.

where n is a time step before the solution drop and pn
i+1 ≥ 0.5. The first term in Eqn. (5.6) is small in magnitude, since 

pn
i ≈ 0.5. The second term in Eqn. (5.6) has a larger gradient of p, since pn

i+2 ≈ 0. It is also negative, and so the increase in 
kA

i+3/2 results in the drop in pn+1
i+1 . At the following time steps, kA

i+3/2 = 0, until the solution crosses the threshold again.

As pi+1 is increasing and is below the threshold, kA
i+1/2 is fixed at 0.5, regardless of the shock position in the cell. From 

Eqn. (5.6), we see that the positive quantity �t/(2�x2)[pn
i − pn

i+1] is added to the current p value at each time step. The 
constant arithmetic average at the interface xi+1/2 allows the solution to artificially increase above p∗ = 0.5, resulting in the 
high frequency oscillations.

Figs. 15a–15b also show that the high frequency oscillations are dependent on the time step size. As �t is decreased by 
half, the number of oscillations in Fig. 15b doubles from those in Fig. 15a. The amplitude of the high frequency oscillations 
also decreases, as �t decreases. The amplitude decrease is expected from Eqn. (5.6), since the additional term is proportional 
to �t . In [2], it is observed that as the time step is decreased, the arithmetic average solution in the high frequency region 
reaches a constant state at p∗ = 0.5, rather then converging to the true solution.

Figs. 15a–15b display the profile of pi+1 over a time window when the shock is in the interval [xi, xi+1]. In Figs. 16a–16b, 
we now look at the profile of pi+2 over the same time window to see the effect of the jump in kA

i+3/2 on the neighboring 
cell. Figs. 16a–16b show that the profile of pi+2 is an increasing piecewise constant. Since pi+2 and pi+3 are both less 
than p∗ , kA

i+5/2 = 0 and the solution update for pn+1
i+2 reduces to

pn+1
i+2 = pn

i+2 + kA
i+3/2

(
pn

i+1 − pn
i+2

)
�t

�x2
. (5.7)

Eqn. (5.7) shows that at the times when pn
i+1 < p∗ = 0.5, kA

i+3/2 = 0, and so pn+1
i+2 = pn

i+2. Otherwise, at the times when 
kA

i+3/2 jumps to 0.5, the solution increases proportional to �t . As expected, the increase in out-flux causes the solution to 
decrease in the left cell (Figs. 15a–15b) and the same increase in in-flux causes the solution in the right cell to increase 
(Figs. 16a–16b).
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Fig. 12. Temporal profiles at position x = 0.32 with �t = �x2/32.

5.2. Integral average

Van der Meer et al. [2] developed the integral average

kI
j+1/2 =

∫ p j+1
p j

k(p̃)dp̃

p j+1 − p j
, (5.8)

which is effective in reducing the numerical artifacts. The integral average is derived by expressing the coefficient k(p) = �p

in Eqn. (1.1) to obtain

pt = ∇ · (�p∇p).

Discretizing �p directly with central differences at the cell face x j+1/2 gives

kI
j+1/2 = �(p j+1) − �(p j)

p j+1 − p j
. (5.9)

Using the definition of �(p) = ∫ p
0 k(p̃)dp̃, Eqn. (5.9) simplifies to Eqn. (5.8).

The numerical solution with the integral average is provided in Figs. 17 and 18. The improvement with the integral 
average is clear. It does not introduce high frequency oscillations near p∗ . Although the low frequency, grid-dependent 
oscillations remain, the amplitude of these oscillations is smaller than those with arithmetic averaging. The numerical 
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Fig. 13. Spatial profiles at time t = 0.05 with �t = �x2/32.

Fig. 14. Solution profiles with N = 200 grid point and �t = �x2/32.
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Fig. 15. Zoomed in region of the high frequency temporal oscillations near p∗ = 0.5 in the left cell pi+1 for the arithmetic average kA
i+3/2 with N = 50 grid 

points at position x = 0.32.

Fig. 16. Zoomed in region of the solution in the right cell pi+2 for the arithmetic average kA
i+3/2 with N = 50 grid points at position x = 0.34.

solution is now monotonically increasing in time [2], matching the behavior of the true solution. The diffusive shock profile 
with the integral average is also illustrated in the spatial results in Fig. 18.

To explain why the integral average outperforms the arithmetic and harmonic averages, we write it in an alternate form 
than presented in [2]. The integral average kI

i+1/2 in Eqn. (5.8) can be broken up at p∗ into two separate integrals to obtain

kI
i+1/2 = kmin(pi+1 − p∗) + kmax(p∗ − pi)

pi+1 − pi
, (5.10)

in the shock interval. It then contains some information about the shock, as encoded in the bounds of the integral. Unlike 
the harmonic and arithmetic averages, the integral average monotonically increases as the shock advances through the 
interval [xi, xi+1].

The corresponding continuous flux is given by

F +
i

I = F −
i+1

I = −kmin(pi+1 − p∗) + kmax(p∗ − pi)

�x
. (5.11)

Using this description, we can see that by utilizing p∗ , the integral flux avoids computing the undefined gradient of p across 
the jump, as done in the schemes with arithmetic and harmonic averaging. It is this incorporation of p∗ into the scheme 
that prevents the high frequency oscillations seen with arithmetic averaging, which explains the improved behavior.
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Fig. 17. Temporal profiles at position x = 0.32 with �t = �x2/32.

As seen, the integral average does not remove the low frequency oscillations. This is because although p∗ is incorporated 
in the flux in Eqn. (5.11), x∗(t) is not. In the case, where kmin = 0, F +

i
I = F −

i+1
I

in Eqn. (5.11) appears to be similar to F +
i in 

Eqn. (2.6). The difference occurs in the denominator, where the relative shock position �x∗(t) detected in SAM is replaced 
with �x in the integral flux. The integral flux is then assuming that the distance to the shock is fixed of size �x.

To see what happens with the temporal oscillations under grid refinement, we also implement the scheme with integral 
averaging and Adaptive Mesh Refinement (AMR) [42]. We define a coarse mesh away from the shock and a fine mesh near 
the shock. The fine mesh travels with the shock as it moves. In Fig. 19, a coarse mesh size of �x = 1/100 is utilized. Within 
the coarse mesh cells surrounding the shock, a fine inner mesh size of �xinner = 1/10 is defined. Fig. 19 displays that 
oscillations are present with a smaller period and damped amplitude. The zoomed in results in Fig. 19 illustrate that there 
are Ninner ≡ 1/�xinner oscillations in between the coarse grid cells, as expected as the front crosses the Ninner = 10 inner 
grid cells for �xinner = 1/10. The temporal oscillations are spatially dependent, and applying AMR does not remove them.

5.3. SAM in finite volume average form and its connection to the integral average

Writing SAM as an averaged-based method on a uniform Cartesian grid of spatial step size �x provides additional insight. 
In particular, we will see another explanation of the temporal oscillations. For j 
= i, we have defined kS AM

j+1/2 by Eqn. (2.5)
in Section 2. The Cartesian and auxiliary grids are the same in the parabolic regions away from the shock. Using Eqns. 
(2.6)–(2.7), we can write the out-flux F + of C V i and the in-flux F − of C V i+1 for SAM in finite volume average form as
i i+1
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Fig. 18. Spatial profiles at time t = 0.05 with �t = �x2/32.

Fig. 19. Temporal profiles at position x = 0.32 with �t = �x2/32 and N = 100 coarse grid points and 10 inner grid points.

F +
i = −

(
kmax

�x

�x∗
p∗ − pi

pi+1 − pi︸ ︷︷ ︸
kS AM

i+1/2
+

)
pi+1 − pi

�x
,

(5.12)

and

F −
i+1 = −

(
kmin

�x

�x − �x∗
pi+1 − p∗

pi+1 − pi︸ ︷︷ ︸
kS AM

i+1/2
−

)
pi+1 − pi

�x
,

(5.13)

respectively. As opposed to the other averaging approaches, now F +
i 
= F −

i+1: conservation is honored on the auxiliary grid, 
defined in Section 2.1.

We can express these SAM averages as a weighted linear combination

c1
kmin(pi+1 − p∗) + c2

kmax(p∗ − pi)
,

pi+1 − pi pi+1 − pi
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of the integral average kI
i+1/2 in Eqn. (5.10). For c1 = 0 and c2 = �x/�x∗ , kS AM

i+1/2
+

in Eqn. (5.12) is recovered, while for 

c1 = �x/(�x − �x∗) and c2 = 0, kS AM
i+1/2

−
in Eqn. (5.13) is recovered. Conversely, we can also express the integral flux in 

terms of the SAM fluxes surrounding the shock cell. Rewriting Eqn. (5.11), we have

F +
i

I = −
[
kmin

pi+1 − p∗

�x − �x∗
�x − �x∗

�x
+ kmax

p∗ − pi

�x∗
�x∗

�x

]
= F −

i+1(1 − y) + F +
i y,

(5.14)

where y ≡ �x∗/�x. The shock moves from left to right in the interval [xi, xi+1], and 0 < y < 1.
As discussed in Section 2.1, the SAM flux is a first order approximation of the analytical flux, and the jump condition is 

satisfied. The integral flux, on the other hand, does not converge to the analytical flux as �x → 0, and does not satisfy the 
jump condition. Without loss of generality, we let the shock be to the right of the cell face xi+1/2 by ε�x for some small 
ε > 0. Then y = 1/2 + ε . Using Taylor series expansion in the parabolic region to the left of the shock gives

F +
i = F L[p(xi+1/2+ε)] +O(�x), (5.15)

where F L[p(x)] = −kmax∇p(x). Similarly, Taylor series expansion in the parabolic region to the right of the shock gives

F −
i+1 = F R [p(xi+1/2+ε)] +O(�x), (5.16)

where F R [p(x)] = −kmin∇p(x). Substituting Eqns. (5.15)–(5.16) into Eqn. (5.14) gives the following

F +
i

I = F R [p(xi+1/2+ε)](0.5 − ε) + F L[p(xi+1/2+ε)](0.5 + ε) +O(�x).

Taking the limit as ε → 0, we obtain

F +
i

I = F R [p(xi+1/2)] + F L[p(xi+1/2)]
2

+O(�x),

as the integral flux at the interface xi+1/2. Since xi+1/2 is to the left of the shock, the analytical flux at xi+1/2 is given 
by the left flux F L[p(xi+1/2)]. The integral flux is then averaging the left and right fluxes across the jump. The right flux 
F R [p(xi+1/2)] should not have any impact on the value across the jump. This jump condition violation is exactly what 
results in the temporal oscillations. SAM does satisfy the jump condition and as the results in Sections 3 and 4 show, it 
does remove the artifacts entirely.

6. Conclusions and future work

This paper explains what causes the mysterious artifacts in discretizations of the discontinuous Generalized Porous 
Medium Equation (GPME), and suggests an alternative method that results in numerical solutions without these artifacts. 
The FTCS scheme with integral averaging performs better than the schemes with harmonic and arithmetic averaging be-
cause it has information about the shock value p∗ . By rewriting the integral average in the shock cell, it can be seen that 
full removal of the numerical artifacts requires more than p∗ , and that the shock location x∗(t) must also be included in the 
numerical scheme. The Shock-Based Averaging Method (SAM) incorporates both x∗(t) and p∗ , and satisfies the jump con-
dition for integral conservation laws to result in numerical solutions with accurate and smooth temporal profiles. Casting 
SAM in the finite-volume framework helps provide understanding on why the numerical artifacts were occurring with finite 
volume averaged-based methods.

Future work includes extensions to higher dimensions and to the Porous Medium Equation (PME) subclass. Since the 
velocity for the GPME is given for arbitrary dimensions, it can be used as input to a level set implementation for extensions 
to higher dimensions, as discussed in Section 4. Another future direction would be to combine the approach from this paper 
with our previous paper [1], discussing the PME subclass of the GPME with continuous coefficients. For the PME, there is no 
known specified p value at the shock, as given by p∗ in this paper. With the additional control volume around the shock in 
the auxiliary finite volume grid from Section 2, p∗(t) can be solved for as an additional degree of freedom, and an approach 
similar to SAM can be taken.
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Appendix A. Exact solution derivation for arbitrary parameters

For the test problem with the initial condition in Fig. 5, the exact solution is known and is used for testing the numerical 
methods. We give the full derivation, which is similar to [43], and is generalized for arbitrary kmax. The domain is partitioned 
into 	1 = (0, x∗(t)] and 	2 = [x∗(t), ∞). The problem can be subdivided into two constant coefficient heat equations [43,44]. 
The solution is monotonically non-increasing and so in 	1, p1(x, t) > p∗ and in 	2, p2(x, t) ≤ p∗ . It can be verified that 
p1(x, t) = 1 −c1�

(
x/(2

√
kmaxt)

)
and p2(x, t) = c2

(
1 −�

(
x/(2

√
kmint)

))
for some constants c1, c2 to be determined. �(x) =

erf(z) = ∫ z
0 φ(y)dy is the standard Gaussian error function, where φ(y) = 2√

π
exp(−y2).

The unknown shock location (x∗(t)) needs to be computed. To do so, two additional boundary conditions are required at 
the shock x = x∗(t):

1. p1(x∗(t), t) = p2(x∗(t), t) = p∗, ∀t (Continuity)
2. kmax(∂ p1(x∗(t), t)/∂x) = kmin(∂ p2(x∗(t), t)/∂x), ∀t (Flux Continuity).

Since Condition (1) must hold for all t , x∗(t) = α
√

t ,

c1 = 1 − p∗

�
(
α/(2

√
kmax)

) , c2 = p∗

1 − �
(
α/(2

√
kmin)

) .

Condition (2) is used to derive a nonlinear solve for the remaining unknown, α. Substituting in the expressions for the 
derivatives and simplifying leads to

c1

√
kmaxφ

( α

2
√

kmax

)
= c2

√
kminφ

( α

2
√

kmin

)
. (A.1)

Let z1 = α/(2
√

kmax) and z2 = α/(2
√

kmin). We substitute the expressions for c1 and c2 into Eqn. (A.1), multiply both sides 
by α

2 and simplify to obtain

1 − p∗

�(z1)

√
kmaxφ(z1) = p∗

1 − �(z2)

√
kminφ(z2) ⇐⇒

(1 − p∗)(1 − �(z2))exp(z2
2)

α

2
√

kmin
= p∗ α

2
√

kmax
�(z1)exp(z2

1) ⇐⇒

(1 − p∗)(1 − �(z2))exp(z2
2)z2 = p∗�(z1)z1 exp(z2

1).

(A.2)

By a series expansion from integration by parts,

1 − �(z2) = exp(−z2
2)

z2
√

π

(
1 − 1

2z2
2

+ 3

4z4
2

− . . .

)
.

Using the above expression, Eqn. (A.2) simplifies to

1 − p∗
√

π

(
1 − 1

2z2
2

+ 3

4z4
2

− . . .

)
= p∗�(z1)z1 exp(z2

1). (A.3)

In our application and most of the numerical tests, kmin = 0. This implies that z2 → ∞. The limit as z2 → ∞ of the 
left hand side of Eqn. (A.3) is simply (1 − p∗)/

√
π . This is an advantage of computing the series form, since we can easily 

take this limit as kmin → 0. This form is also preferred numerically when kmin is small to avoid multiplication of the large 
exp(z2

2)z2 terms. For the kmin = 0 case, the unknown (α) only appears in z1 on the right hand side of the equation, given 
by

1 − p∗
√

π
= p∗�(z1)z1 exp(z2

1). (A.4)

A simple one-dimensional nonlinear equation solver can be used to solve this equation for z1 , where α = 2
√

kmaxz1.

Appendix B. Error tables and convergence study

This appendix contains the convergence results for the model problem tested with the same time step size �t = �x2/32
as in the prior sections. The l2 and l∞ error norms are calculated with respect to the exact solution on the corresponding 
grid. The error is measured globally, and includes the points surrounding the shock. We compare the errors of the FTCS with 
arithmetic and integral averaging to those of SAM. The errors of the FTCS with harmonic averaging are not shown, since 
the solution locks and does not converge. For the methods with arithmetic and integral averaging, even on finer grids, the 
asymptotic region is not yet reached. Tables B.1–B.2 show that SAM has approximately first order convergence and errors
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Table B.1
l2 norm errors.

N = 25 N = 50 N = 100 N = 200 Order

Arithmetic 3.2335e–02 6.8351e–03 3.4431e–02 1.9773e–02 N/A
Integral 7.4250e–03 7.0866e–03 2.4898e–02 1.1974e–02 N/A
SAM 8.4813e–04 4.7762e–04 2.0583e–04 6.6594e–05 1.2229

Table B.2
l∞ norm errors.

N = 25 N = 50 N = 100 N = 200 Order

Arithmetic 4.8237e–02 1.5223e–02 3.5742e–02 2.0394e–02 N/A
Integral 1.4104e–02 9.1485e–03 2.9971e–02 1.6252e–02 N/A
SAM 2.1859e–03 1.7763e–03 1.0586e–03 4.5134e–04 1.1336

Fig. B.20. Loglog convergence plots for the Stefan problem.

that are orders of magnitude lower than those for the averaged-based methods. The first order convergence of SAM is also 
shown in Figs. B.20a–B.20b. We do not consider higher order methods because of the dominance of the shock.
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